
- -~ ~ ,~lNTATION PAGE Ior OA O 070

A D -A 239 228 i"1NwF _ _ _ _ _ _ _ __~0A tWO"4W A11.cls

ORY ATE3. EPOT ryipt) O ATIS COVERED
I1 1111111j j1111'1111 ROT I FIN'AL'0! V.V 89 to 31 DEC 9011111m III iiiM 11111111 ' ,W1 ue~

PARALLELLOGIC PROGRAIMNING AND PARALLEL SYSTEM SOFTWARE'

HARDWARE fr FS-002

6. AUhORS)61102F 2304/A7

Dr. Minker

7. FPWO8MNG ORGANiZATION NAMEf(S) AND ADORSS0E)
E PORtfA NUORAIATO

Univeristy of Maryland
Computer Science Department tot~
College Parkm MD 20742 1

T7.SNORGIMTORNG AGENCY NAME(S)AXO AoOPESS(ES) 1.SOSAGMNTR
wr' '~ A4UNCYREPOITN4JMSI

LFOsN/uU b.--AFOSR-90-0027
Bldg 410 61102F 2304/A7

11. 5UpPUMINTAAY NOTIS

121. OSSTMIUTlO/AVAILNUITY STATIMENY 12L. 01STRIUTV"E COO

AprVMe~ to? Public role&".;

13. AISTRACT (A&Muffm 200 aI
This constitutes the final report of work Performed under AFOSR grant number 90-0027 to investigate

parallel problem solving and deductive databases. under the grant experiments were Performed on the

PRISM Parallel inference system on the BBN Butterfly. The experiments evaluated alternative message

passing strategies for distributing tasks to processors at run-time. Several enhancements were made tol

PRISM during the grant period. These are: a new inference enginq was implemented which provides more

effieienct support for the full control language of PRISM; and a stack based inference engine was

implemented which provides efficient support for the use of limited set of control strategies.

Simulation studies were performed which evaluate alternative methods for scheduling tasks on Parallel

architectures. Two methods were examined which allow thek OR-parallel execution of logic programs with

no communication overhead. A study was perfomred evaluating two alternative methods for incorporating

integrity constraints into query processing in PRISM. In the first method, separate constraint

processors are introduced which check constraints at run-time. In the second method, contraints are

incorporated through compile-time transformations. The study indicates that constraints are useful

inquery Processing and that the compile-time methodology results in more efficient performance than

checking constraints at run-time. In addition to the above, work continued in the area of informative

answers to queries in deductive databases.

17. SECURIT CLASSIPCTIO 18. SE1CURIT CLASSW-ICATION 19. SECURIT CLASS1PICATM1OU 2& U tATlON OF ASSTRACT

Of REPORT OF TWO PAGE OF ASSTACT

UNCLASSIFIED *UNCLASSIFIED UNCLASSIFIED SAR

NSN 79,*4iZ3O 5500 sth (Fwrm 296 (Rev. 2.89)

Abstract

This constitutes the final report of work performed under AFOSR grant number 90-002?Lo investigate

parallel problem solving and deductive databases. Under the grant experiments were performed on the PRISM

parallel inference system on the BBN Butterfly. The experiments evaluated alternative message passing strategies

for distributing tasks to processors at run-time. Several enhancements were made to PRISM during the grant

period. These are: a new inference engine was implemented which provides more efficient support for the full con-

trol language of PRISM: and a stack based inference engine was implemented which provides efficient support for

the use of a limited set of control strategies.

Simulation studies were performed which evaluate alternative methods for scheduling tasks on parallel

architectures. Two methods were examined which allow the OR-parallel execution of logic programs with no

communication overhead.

A study was performed evaluating two alternative methods for incorporating integrity constraints into query

processing in PRISM. In the first method, separate constraint processors are introduced which check constraints

at run-time. In the second method, constraints are incorporated through compile-time transformations. The

study indicates that constraints are useful in query processing and that the compile-time methodology results in

more efficient performance than checking constraints at run-time.

In addition to the above, work continued in the area of informative answers to queries in deductive data-

bases.

I 69

,- ,91-06923

1. Introduction

This report constitues the final report of work performed on parallel problem solving and deductive data-

bases under Air Force Grant AFOSR 90-0027Under the grant experiments were performed using the PRISM

system on the BBN Butterfly parallel architecture to evaluate message passing strategies and the use of con-

straints in problem solving. Several enchancements were made to the PRISM system including che design and

implementation of two inference engines. Simulation studies were performed which evaluate methods for distri-

buting tasks to processors which do not require interprocess communication or synchronization. In addition, we

extended our work in cooperative answers to database queries.

Due to budget cuts several proposed investigations were not performed. These areas are:

1. AN)-parallel execution of PRISM

2. Investigations in Al-Based parallel software

3. Coupling databases to processors in parallel/non-pa.allel environments."

As a consequence of the work accomplished during the past year of the grant period we have published:

1. I Ph.D. thesis with partial support from the grant [Giuliano90bl.

2. 1 journal article [Chakravarthy90]

3. 3 book chapters [Giuliano90a,Gal,Granti.

4. 2 refereed conference papers [Lin,Liu]

5. 1 invited conference paper [Minker]

6. 1 workshop paper [Gaasterland9Obl

7. I technical report [Gaasterland90a]

A list of papers that have been written during the current grant is provided in Section 2.3. A total of 7 published

papers have appeared in print, and a total of 3 additional papers have been accepted for publication during the

grant period. The references in Section 4 of the proposal list all papers produced with support from the AFOSR

during the several years that the Air Force has been supporting the research.

2. Accomplishments on Effort During Period November 1g9g - November 199O

In this section we report on the accomplishments obtained during the period from November 1989 to

November 1990. This section is subdivided into three major parts. The first section, 2.1, describes the accom-

plished research with respect to parallel logic programming. The second section, 2.2, describes the accomplished

research ,"ith respect to deductive databases. Section 2.3 contains a list of all papers and reports written during

the grant period.

Three major efforts were proposed:

1. Investigations in parallel logic programming using PRISM

2. Investigations in Al-based parallel software

3. Investigations in deductive databases

Due to budget cuts the second research area was dropped as well as several sub-tasks of the first and third

research areas. Each of the tasks, in which work was performed, are described in the following sections.

2.1. Investigations in Parallel Logic Programming Using Prism

There were five major tasks involving the parallel execution of logic programs that we planned to undertake

during the current grant period.

1. Continued experiments with PRISM

2. An evaluation of constraints in parallel problem .olving

3. Stack ba.ed execution models

•4. Memory management for the shared memory model of PRISM

5. Experiments with AND-parallelism

Emphasis was placed on tasks in the first four areas. Substantial progress has been made in the four areas stu-

died.

-3-

2.1.1. Continued Experiments with PRISM

In previous grant periods the PRISM system was implemented on the BBN Butterfly and McMOB parallel

architectures. In this grant period experiments have been performed evaluating the PRISM system and substan-

tial improvements have been made to the PRISM inference engine. Both theoretical and empirical studies were

performed on task distribution in message passing parallel architectures.

A new inference engine for PRISM has been designed and implemented. The new engine supports the same

control features as the old engine and executes ten to twenty times faster. The engine achieves more efficient exe-

cution through the use of binding environments for variables. The current implementation is operational on

sequential architectures as a stand alone logic programming system. A methodology for achieving parallel execu-

tion has been designed for the new inference engine and is currently being implemented.

Message passing protocols for distributing tasks to processors in PRISM have been evaluated tGiuliano9Oaj.

In PRISM, problem solving machines (PSMs) with extra work actively seek "out idle processors by sending mes-

sages. If no machines are available when a resource allocation message is sent, then an overhead is incurred for no

increase in parallel performance. Alternative protocols are investigated for knowing when resources are available

for parallel problem solving. The protocols trade off the number of failed resource allocations for the amount of

machine utilization. Six protocols (A - F) were evaluated in the experiments. In protocol A processors attempt to

allocate remote resources regardless of failed resource allocations. In protocol D processors attempt to allocate

remote resources until a failed resource allocation occurs (a readback). In the remaining protocols (B,C,E, and F)

processors communicate processor availability. The protocols differ in when they send available messages and the

addressing mode used to send the message (see the table in figure 1). Three benchmark programs were executed

on the BBN Butterfly version of PRISM using the alternative message passing protocols. Experimental results are

given in Figures la-Ic for a version of the 8-queens program. Figure la shows the speed-up obtained over execu-

tion on a single processor for each of the protocols. Figure lb shows the idle time in the system versus the

speed-up when executing with .50 processors. Figure Ic shows the number of readbacks (i.e. failed processor allo-

cations) versus the speed-up when executing with 50 processors. The figures show a clear tradeoff between idle

time and failed resource allocations. Protocols with low idle time have a high number of failed resource alloca-

-4-

tions. Protocols with high idle time have a low number of failed resource allocations. The best performance

occurs in protocol C which balances the number of failed resource allocations and the idle time.

Another study evaluates the use of task scheduling strategies to improve the parallel performance of PRISM

[Giuliano90a.Giuliano90b!. The study compares breadth-first versus depth-first task distribution strategies. In

breadth-first execution tasks are distributed to new processors in a breadth-first manner and tasks are executed

locally in a depth-fir-st manner. In depth-first execution both remote and local tasks are scheduled in a depth-

first manner. Four benchmark programs were executed on the BBN Butterfly version of PRISM using the alterna-

tive distribution strategies. Experimental results are given in Figure 2 for a version of the 8-queens program.

Two tables are given. The first table shows the speed-up versus the number of processors for each protocol. The

second table shows the number of task invocations versus the number of processors for each protocol. The study

indicates that breadth-first scheduiing results in better parallel performance by decreasing the number of tasks

distributed among the processing elements.

Theoretical analysis and simulation studies were performed on the distribution of OR-parallel tasks to pro-

cessors. A study evaluated an approach for distributing tasks to processors which does not involve communica-

tion between processing elements. In random .scheduling [Janakarirh each processor is initialized with the same

task and performs a depth-first search on the task. The processors search different portions of the proof tree by

randomly ordering the program clauses to be executed. The idea is that some processors will select a short path

and will thus find the solution quickly. Random scheduling was evaluated using simulation studies and theoretical

analysis !Lin]. The evaluation demonstrates that on the average, random scheduling is not worse than approaches

which use interprocess communication even if communication costs are assumed to be zero. With realistic com-

munication costs. random scheduling performs better than approaches which require communication. Random

scheduling is not efficient for problems in which all solutions are required. If all solutions are required, then each

processor will randomly explore the entire search space.

A modification of random scheduling is rule-based scheduling. Like random scheduling, rule based schedul-

ing does not entail communication between the parallel processing elements. All processors are initialized with the

same tasks and perform a depth-first traversal of the search space. In rule-based scheduling, processors order the

-5-

Spee-Upvs.Numer o Prcesorsb: Speed-Up ;s. Idle Time (50 Processors)
a: Speed-Up...vs...Number..o...r..e....r.................. -....

50,~~~~~~~ ~ ~ ~ ~

C !
40040..........

B13

30 S ao0.

FF

20

.0 30 40 .50 60 0 10 '20 .3040 50 60 70
Number of Processors Percent Idle Time

c: Speed-Up vs, Num of Readbacks (5O Processors)
50...

40C. E

Speed-up TmonRuntime
TmonSingle Processor : 30..

Idle Titne= Sum of Idle Time tar each Processor F.. A.
N~umber of Processort X Runtime .3!0.

10'

01
10 100 1000 10000 10000

Number of Readbacks
Communication Condition Location Scnt NameI

PSM becomes tree all busy P5%1
Processors __________sile busy PSM C
Available PSM becomes tree allbusy PSM Eafter readback sinul-ebusy P\4 F

Stop sending queries-D

"one I after r~adback. ________

Send queries -A

____________roagdles or reaebatks I_______

Message Passing Protocols

Figure 1: MessWg Passing Protocols for the 8 Queens on BBN Butterfly

IN

U
40 b..................

p r

!
dr
I0Q

pU

e

to ;.

0 .0
0 t0 :2 30 40 so 00 0 to 20 30 40 so 00

Figure 2: Queens2 Program: Breadth-First vs Depth-First Node Distribution

clauses at choice points based upon simple rules. For example, consider a program which has two alternative

branches at each level of the proof tree. In this case, a rule could specify that at each alternative branch the pro-

cessors are divided in half. In this manner. processors are guaranteed to examine different portions of the proof

tree. A backtracking search occurs once a branch has only a singlet processor searching it. This approach has no

inter-process communication and allows multiple answers to be obtained in an efficient manner. Preliminary

results obtained from simulation studies are promising. High speed-ups were obtained for programs with regular

shaped execution trees. For example. the simulation shows that for the 8-queens program, a speed-up of .10 using

128 processors can be achieved. In contrast, the best concrete implementations. which use communication between

processors, saturate with a speed-up of 14 after using 32 processors. Application programs with irregular shaped

proof trees did not achieve good parallel speed-up. An initial investigation suggests that programs whose proof

trees are irregular can be transformed so that their proof trees become regular.

Random and rule-based scheduling differ from scheduling techniques which require interprocess rommunica-

tion. In systems which require communication, an initial query is given to a single processor. The processor exe-

cutes the task and distributes sub-tasks as they occur to new machines. Likewice, the other machines execute their

tasks possibly distributing new sub-tasks to other processors. Interproces communication and synchronization is

-7-

required to distribute the tasks. In contrast, in rule or random-based scheduling, there is no overhead for distri-

buting tasks to processors. Because random and rule-based scheduling do not require communication, the simula-

tion techniques used in the evaluations are highly accurate. Thus. we expect that concrete implementations of the

scheduling strategies will result in similar performance.

2.1.2. Constraints in Parallel Problem Solving

A series of experiments were performed evaluating two methodologies for incorporating constraints in

PRISM "Gaasterland9oal. Constraints provide the ability to prune the search space of a program based upon

semantic information. The first approach incorporates constraints at rum-time by introducing constraint solving

processors !Kohlil. In this approach deductive piocessors interact with constraint processors to detect proof states

which violate the integrity constraints. The second approach incorporates con.traints by compile-time transfor-

mations which intergrate constraints with the program clauses jChakravarthy . The resulting program may then

be executed using only deductive processors. An evaluation of the two methodoiogic- using the PRISM system on

the BBN Butterfly parallel architecture yields the following results:

1. The evaluation demonstrates that widely used classes of logic programs can use constraints to improve query

processing.

2. The evaluation demonstrates that the compile-time approach to incorporating constraints results in better

performance than the run-time approach.

.3. The evaluation reveals additional issues in the compile-time and run-time approaches which must be

addressed to utilize the theories of 'Kohlij and [Chakravarthyl.

Application pro:rams were encoded from three logic programming domains. The domains involve inheritance

hierarchies. the use of clustered data, and generate-and-test programs. The evaluation shows that for each of the

domains both methods for incorporating constraints performs better than not utilizing constraints. The runs

incorporating the compile-time approach resulted in better performance than the run-time approach for all the

program domains.

Experimental data is given for incorporating constraints in a inheritance hierarchy program on the BBN

Butterfly version of PRISM. Experiments were performed in three modes without constraints, with constraint

m~ l w Ha mm m m n nm~ um m n •m• ~m •• • •m • m W • mm-8- m m m

machines, and with constrairts compiled into the source program. The experiments incorporated 1.2.4, and 6 pro-

cessing elements. In the experiments inco:porating separate constraint machines, each constraint machine is

tightly coupled with a deductive processor. The results are given in Figure 3. The table shows that both the

run-time and compile-time method for incorporating constraints performs better than not using constraints. In

addition, executions using the compile-time method perform better than using the run-time method.

2.1.3. Stack-Based Execution Models

A new binding scheme which supports OR-parallel execution of logic programs on distributed memory

architectures was designed and implemented. The scheme is designed for stack-based inference engines and is

20

R
nt
I

m
e

n no.-cons aints.

e
- constrainmt- achine

conip ed

0 !

0 1 2 3 4 5 6 7
Number of Processors

Figure 3: Run-Time Data for a Semantic Network Program

-9-1

currently implemented in an inference engine for the PRISM problem solving component. The main idea is that

on creating a new task enough information is packaged from the current processor such that the processors can

execute independently. The advantage of the scheme is that it allows processors to execute deduction steps with

no overhead over sequential execution. As such any improvements gained due to parallel execution offer improve-

ments over execution on sequential architectures.

An evaluation of the binding scheme was performed using 60 processors on the BBN Butterfly version of

PRISM ,Giuliano90b. The evaluation shows that, programs in the benchmark set achieve from 5-30 factors of

speed-up over sequential execution when using 60 processing elements (see Figure 4). Detailed statistics collected

from the experiments indicate that many of the benchmark programs achieve low speed-up due to a high start-up

cost for creating new parallel tasks. This is illustrated in Figure 5 which plots the percentage of time spent. per-

forming deduction steps versus the number of processors used in problem solving. The figure shows that for some

benchmarks. processors spend up to 80 percent of their active time performing overhead for parallel execution.

speed-up vs. Number of Processors (all answers)401................

30..

s/ " - /t 1
,p

U C

0 10 .'2 30 40 &) 60 70
Nqumbe~r of Processors

Figure 4: Speed Up in PRISM

-10-

Activre Time Spent on Deduction

go. -

P so-

r

L e

0

0 1 7-O?04 0 0 7

\tjmb-r of Proesor

Figure 5: Percentage of Active Time Spent on Deduction

The use at task distribution strategies were invcstigated to lower the overhead tar creating parallel tasks. The

study shows that, task distribution strategies can improve parallel performance by up to 50 percent. by preventing

trivial goals tram being executed in parallel. Both run-time an~d compile-time strategies were shown to be useful

for preventing trivial tasks tram being exccuted in parallel.

2.1.4. Memory management for the shared memory version of PRISM

Although samne work was performed an this task, no substa~ntial results were obtained as the 128 node BBN

But terfly at. our site was dismantled.

2.2. Investigations in Deductive Databases

The proposed investigations in this area were to:

1. Extend work an cooperative anzwers

2. Compute answers in non-Horn theorits

3. Couple databases to processors in parallel/non-parallel environments

Emph sis was placed on the first and second area.

2.2.1. Extending Work on Cooperative Answers

The theory of cooperative answers developed by Gal and Minker 'Gal] with support from the AFOSR works

on both relational databases and on definite. nonrccursive, function free deductive databases. Until now, the focus

of the cooperative answering effort was to collect information that could be included in a cooperative answer and

to select salient information from the available pool. The theory takes advantage of integrity constraint informa-

tion already available in a database to correct user misconceptions and to expand or to narrow the scope of

answers. As of the previous grant period, the cooperative theory was fully implemented and the working system

provided the basis for further research.

In the current grant period, our work focused on the following:

(1) designing a more sophisticated natural language output component:

(2) focusing th answer to address the original query and the user's needs;

(3) using information in the query's proof tree to provide additional cooperative information.

Even when the contents of an answer satisfy the query, address presuppositions, and are suitable to the

user's purposes. expressing the answer well in natural language remains a complex task. Although it is easy to

map predicates into natural language, the resulting language can be haphazard and fiat. For example, if the

clause to be realized in natural language is grandmother(rose, sally) <--tnother(ro.e,jack),father(ack,sally), a

straightforward mapping would be "Rose is the grandmother of Sally because Rose is the mother of Jack and

Jack is the father of Sallym. Similarly, mother(rose.jack) and mother(rose,george) would become ORose is the

mother of Jack and Rose is the mother of George*. Better responses would be "Rose is Sally's grandmother

because she is the mother of Jack, who is Sally's father" and ORose is the mother of Jack and George".

We have designed and partially implemented a theory to organile the elements of a cooperative response.

The theory incorporates principles of coordination, subordination, anaphora, pronominalization, and discourse

focus to organize the content of the answer. A phrase level grammar is then called to realize the individual

-12-

phrases of the answer, and the final output is a more coherent, structured multisentential output. Our approach

extends the representation given by Kowalski [Kowalski! which expresses n-ary relations as binary relations to

incorporate information about grammatical categories. Dependencies across literals in the logical cooperative

answer can be detected easily in the binary form, and they are used to identify opportunities for coordination,

subordination and anaphora.

A prototype system has been implemented which transforms the cooperative response into the binary rela-

tions containing grammatical category information, collects dependencies across the binary relations, and uses

them to organize the natural language output. Right now, the system can produce all allowable organizations.

Further work must be done to select among organizations.

Toward developing criteria for organization. we have examined how to use the information gathered in

translating the natural language query into a logical query and then into the database language query. Although

the relations in the database query capture the intention of the user's natural language query, their literal mean-

ing can differ. For example, a database relation may contain arguments that the user doesn't care about. Any

values that those arguments obtain during the answering process should be suppressed in the natural language

output unless they are determined to be of inc:dental use to the user.

Our prototype system uses information gathered in the translation from natural language to database

language to focus the cooperative response. The resulting cooperative answers address the actual query asked by

the user rather than the database version.

2.2.2. Computing Answers in Non-Horn Theories and Null Values

An execution model was designed implementing SLINF resolution for disjunctive logic programs. The

model extends the execution model for PROLOG to allow disjunctive clauses. The implementation is in an initial
I

phase. Currently a loader has been designed and tested for disjunctive clauses. The inference engine itself has not

been completed.

-13-

2.3. Papers and Reports Published from November 1989 - November 100

Below we list the papers or reports written during the period November 1989- November 1990. As a conse-

quence of the work. we have published 10 papers.

A list of all papers and reports written since the AFOSR first sponsored the work is given in the bibliogra-

phy in Section 4. The list of papers and reports that have been published during the present grant period are:

Bibliography

1. Chakravarthy, U.S., Grant, J. and Minker, J. "Logic Based Approach to Semantic Query Optrimization',
AC.' Transactions on Database Sy&stets, Vol. 15. No. 2, June 1990, 162-207.

2. Gaasterland. T., Giuliano. M.. Litcher. A., Liu. Y., & linker, J. -Using Integrity Constraints to Control
Search in Knowledge Base Systems', bIIACS-90-27, TR-2416. Feb. 1990

3 Gaasterland. T., Minker, J., Rajasekar. A.. "Knowledge Base Systems - A Deductive Database Approach",
Workshop on Knowledge Base Management Systems, AA- 90.

4. Gal. A., & Minker. J. "Producing Cooperative Answers in Deductive Databases" In: Logic and Logic Gram-
mer for Language Processing (Eds. Patrick St. Dizier & Szpakowicz S.) L.S. Horward Ltd. (to appear).

5 Giuliano. M.. "The Control and Execution of Parallel Logic Programs". Ph.D. Thesis. Department Of Com-
puter Science. University of Maryland, College Park Md. (in preparation)

6. Giuliano, M.. Kohli. M., Minker, J. and Durand, I. "PRISM: A Testbed for Parallel Control," In: Parallel
Algorithn.s.for Machine Intelligence. L. Kanal, V. Kumar, P.G. Gopalakrishnan (Editors), Springer-Verlag
1990.

7. Grant, J. and Minker, J. "Integrity Constraints in Knowledge Based Systems' In: Knowledge Engineering,
Vol. II. .4pplications. H. Adeli (Editor), McGraw-Hill Publishers, 1990. 1-25.

8. Nfinker, J. 'Toward A Foundation of Disjunctive Logic Programming," (Invited Banquet Address), Proceed-
ings of the North American Conference on Logic Programming, 1215-1235. Ewing L. Lusk and Ross A.
Overbeek (Editors), MIT Press, 1989.

9. Lin, Z., "Expected Performance of the Randomized Parallel Backtracking Method". in Proceeedings of the
1989 North American Conference on Logic Programming, 677-696, Ewing L. Lusk and Ross A. Overbeek
(Editors), MIT Press, 1989, pages 677-696.

10. Liu, Y., "Null Values in Definite Programs", To appear in 1990 North American Conference of Logic Pro-
gramming.

-14-

Bibliography

[Chakravart hyS71
Chakravarthy. U.. Grant. 3., Minker, J., Foundatio' of' semantic query optimazation for deductive data-
bases, in Foundations of Deductive Databases and Logic Programming, Ed. 'Minker, J., Mvorgan-Kaurmann,
1 987.

:Chakravarthygol1
hakravarthy, U.S., Grant, J. and Minker. .J. -Logic Based Approach to Semantic Query Optrimization'.
.AM Transactions on Database Systems, Vol. 15, No. 2. June 1990. 162-207.

;Cohen',
Cohen. .J.. "Constraint Logic Programming Languages", in Communications of the AC'M, Vol. 33, No. 7,
July 1990.

Ifin88)
Kass, R., Finn, T., ",Modeling the User in Natural Language Systems". in Computational Linguistics, Vol.
1-1. No. 3., September 1988. pages .5-22.

[fin87:
Finn. T.. "GUMS - A General User Modelling Shell" TR MS-CIS-87-74 LINO LAB 80, University of'
Pennsylvania. Philadelphia, PA, 1987.

Fu;~ Fu. Li-Nuin. "C'ombining Nueral and Knowledge Base Approaches to Artificial Intelligence", in Methodolo-
gies for Intelligent SYstems, 4, Ed. Ras, Z., 1989.

10aasterl andg0ai
Gaasterland. T.. Giuliano, M.. Litcher, A., Liu. Y., & Mvinker, J. 4Using Integrity Constraints to Control
Search in Knowledge Base Systems', UMNLALCS-90-27, TR-2416, Feb. 1990.

'Gaasterl andgObj
Gaasterland. T., Minker, J., Rajasekar, A., "Knowledge Base Systems - A Deductive Database Approach",
Workshop on Knowledge Base M'vanagement Systems, AAAI 90.

'Gafl' Gal. A.. & %linker. J. "Producing Cooperative Answers in Deductive Databases" In: Logic and Logic Gram-
mier for Language Processing (Eds. Patrick St. Dizier & Szpakowicz S.) L.S. Horward Ltd. (to appear).

[Giulianog0a':
Giuliano, M., Kohli. M., Minker, J. and Durand, 1. "PRISM: A Testbed for Parallel Control," In: Parallel
A4lgorithmns for Machine Intelligence, L. Kanal, V. Kumar, P.G. Gopalakrishnan (Editors), Springer-Verlag
1990.

iGiulianogObj
Giuliano. M.. *The Control and Execution of' Parallel Logic Programs", Ph.D. Thesis, Department Of' Coin-
puter Science. University of' Maryland, College Park Md.

iGrantl
G1rant, J. and Nlinker, J. 'Integrity Constraints in Knowledge Based Systems" In: Knowledge Engineering,
Vol. I1. App~cations, H. Adeli (Editor), MlcGraw-Hill Publishers, 1990, 1-25.

[JanakarinmJ
Janakiram, V. , Agrawal. D., and Mehrotra. R., "fA Randomized Parallel Backtracking Algorithm", in IEEE
Transactions on C'omputers, Vol. 37, NO. 12, December 1988.

'Kale:
Kale. L.V., *Parallel Excecution of' Logic Programs: The REDUCE-OR Process Model", In Proc. of the
Fourth International Conference on Logic Programmring, May 1987.

[Kohlis':3]
Kohli. M., Minker, J.. "Control in Logic Programs Using Integrity Constraintsm, In Proc. of the 108$ Logic
Programming Workshop. Algarve, Portugal, June 1983, pp 153-170.

l\'ow alski. R.A., 'Logic for Problem Solving'. Elsevier North Holland Inc.. New York. 1979.
:Kumar87,%j

IKumar. V.. Nageshwara. R.. 'Parallel Depth First Search. Part 1. Implementation'0, in International Jour-
nal of Parallel Programming, Vol. 16, No. 6. 1987.

JKumar87b
IKuniar. V., Nagesbwara. R., "Parallel Depth First Search. Part 11. Analysiso, in International Journal of
Parallel Programming, Vol. 16, No. 6. 1987.

Lini Lint. Z., 'Expected Performance of the Randomized Parallel Backtracking Method", in Proceeedings of the
1989 North American Conference on Logic Programming, 677-696, Ewing L. Lusk and Ross A. Overbeek

- (Editors), MIT Press, 1989, pages 6377-696.
VJu Lu, Y., 'Null Values in Definite Programs', To appear in 1990 North American Conference of Logic Pro-

g1raniming.

1 uskV
Lusk, E., et. al., "The Aurora OR-Parallel PROLOG Systemu, Proceedingi of the International Conference
on Fifth Generation Computer Sy-sterns. ICOT. 1988.

%inker:
Ntinkor. J. 'Toward A Foundation of Disjunctive Logic Programming," (Invited Banquet Address), Proceed-
ings of the North American Conference on Logic Programming. 1215-12:3.5. Ewing L. Lusk and Ross A.
Overbeek (Editors), MIT Press. 1989.

'%loko-Okal
Moko-Oka. T.. "Challenge for Knowledge Infromation Processing Systems (Preliminary Report on Fifth
Generation Computer Systems)". in Proceedings of the International Conference on Fifth Generation Coin-
puter Systemns, ICOT. 1981. pgs. 1-8-5.

